Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Cancer Discov ; 13(12): 2584-2609, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37676710

RESUMO

Signaling rewiring allows tumors to survive therapy. Here we show that the decrease of the master regulator microphthalmia transcription factor (MITF) in lethal prostate cancer unleashes eukaryotic initiation factor 3B (eIF3B)-dependent translation reprogramming of key mRNAs conferring resistance to androgen deprivation therapy (ADT) and promoting immune evasion. Mechanistically, MITF represses through direct promoter binding eIF3B, which in turn regulates the translation of specific mRNAs. Genome-wide eIF3B enhanced cross-linking immunoprecipitation sequencing (eCLIP-seq) showed specialized binding to a UC-rich motif present in subsets of 5' untranslated regions. Indeed, translation of the androgen receptor and major histocompatibility complex I (MHC-I) through this motif is sensitive to eIF3B amount. Notably, pharmacologic targeting of eIF3B-dependent translation in preclinical models sensitizes prostate cancer to ADT and anti-PD-1 therapy. These findings uncover a hidden connection between transcriptional and translational rewiring promoting therapy-refractory lethal prostate cancer and provide a druggable mechanism that may transcend into effective combined therapeutic strategies. SIGNIFICANCE: Our study shows that specialized eIF3B-dependent translation of specific mRNAs released upon downregulation of the master transcription factor MITF confers castration resistance and immune evasion in lethal prostate cancer. Pharmacologic targeting of this mechanism delays castration resistance and increases immune-checkpoint efficacy. This article is featured in Selected Articles from This Issue, p. 2489.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Fatores de Transcrição , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Evasão da Resposta Imune , Receptores Androgênicos/genética , Castração , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia
3.
Cell Rep Med ; 4(2): 100937, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787737

RESUMO

Metastatic prostate cancer (PCa) inevitably acquires resistance to standard therapy preceding lethality. Here, we unveil a chromosomal instability (CIN) tolerance mechanism as a therapeutic vulnerability of therapy-refractory lethal PCa. Through genomic and transcriptomic analysis of patient datasets, we find that castration and chemotherapy-resistant tumors display the highest CIN and mitotic kinase levels. Functional genomics screening coupled with quantitative phosphoproteomics identify MASTL kinase as a survival vulnerability specific of chemotherapy-resistant PCa cells. Mechanistically, MASTL upregulation is driven by transcriptional rewiring mechanisms involving the non-canonical transcription factors androgen receptor splice variant 7 and E2F7 in a circuitry that restrains deleterious CIN and prevents cell death selectively in metastatic therapy-resistant PCa cells. Notably, MASTL pharmacological inhibition re-sensitizes tumors to standard therapy and improves survival of pre-clinical models. These results uncover a targetable mechanism promoting high CIN adaptation and survival of lethal PCa.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Instabilidade Cromossômica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/uso terapêutico , Proteínas Serina-Treonina Quinases/genética
4.
Cell Mol Gastroenterol Hepatol ; 13(4): 1276-1296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34954189

RESUMO

BACKGROUND & AIMS: Sporadic colorectal cancers arise from initiating mutations in APC, producing oncogenic ß-catenin/TCF-dependent transcriptional reprogramming. Similarly, the tumor suppressor axis regulated by the intestinal epithelial receptor GUCY2C is among the earliest pathways silenced in tumorigenesis. Retention of the receptor, but loss of its paracrine ligands, guanylin and uroguanylin, is an evolutionarily conserved feature of colorectal tumors, arising in the earliest dysplastic lesions. Here, we examined a mechanism of GUCY2C ligand transcriptional silencing by ß-catenin/TCF signaling. METHODS: We performed RNA sequencing analysis of 4 unique conditional human colon cancer cell models of ß-catenin/TCF signaling to map the core Wnt-transcriptional program. We then performed a comparative analysis of orthogonal approaches, including luciferase reporters, chromatin immunoprecipitation sequencing, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) knockout, and CRISPR epigenome editing, which were cross-validated with human tissue chromatin immunoprecipitation sequencing datasets, to identify functional gene enhancers mediating GUCY2C ligand loss. RESULTS: RNA sequencing analyses reveal the GUCY2C hormones as 2 of the most sensitive targets of ß-catenin/TCF signaling, reflecting transcriptional repression. The GUCY2C hormones share an insulated genomic locus containing a novel locus control region upstream of the guanylin promoter that mediates the coordinated silencing of both genes. Targeting this region with CRISPR epigenome editing reconstituted GUCY2C ligand expression, overcoming gene inactivation by mutant ß-catenin/TCF signaling. CONCLUSIONS: These studies reveal DNA elements regulating corepression of GUCY2C ligand transcription by ß-catenin/TCF signaling, reflecting a novel pathophysiological step in tumorigenesis. They offer unique genomic strategies that could reestablish hormone expression in the context of canonical oncogenic mutations to reconstitute the GUCY2C axis and oppose transformation.


Assuntos
Neoplasias Colorretais , beta Catenina , Carcinogênese/genética , Cateninas/genética , Cateninas/metabolismo , Neoplasias Colorretais/patologia , Humanos , Ligantes , Região de Controle de Locus Gênico , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/metabolismo , Fatores de Transcrição TCF/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
5.
Cancer Res ; 82(3): 458-471, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903608

RESUMO

Despite treatment with intensive chemotherapy, acute myelogenous leukemia (AML) remains an aggressive malignancy with a dismal outcome in most patients. We found that AML cells exhibit an unusually rapid accumulation of the repressive histone mark H3K27me3 on nascent DNA. In cell lines, primary cells and xenograft mouse models, inhibition of the H3K27 histone methyltransferase EZH2 to decondense the H3K27me3-marked chromatin of AML cells enhanced chromatin accessibility and chemotherapy-induced DNA damage, apoptosis, and leukemia suppression. These effects were further promoted when chromatin decondensation of AML cells was induced upon S-phase entry after release from a transient G1 arrest mediated by CDK4/6 inhibition. In the p53-null KG-1 and THP-1 AML cell lines, EZH2 inhibitor and doxorubicin cotreatment induced transcriptional reprogramming that was, in part, dependent on derepression of H3K27me3-marked gene promoters and led to increased expression of cell death-promoting and growth-inhibitory genes.In conclusion, decondensing H3K27me3-marked chromatin by EZH2 inhibition represents a promising approach to improve the efficacy of DNA-damaging cytotoxic agents in patients with AML. This strategy might allow for a lowering of chemotherapy doses, with a consequent reduction of treatment-related side effects in elderly patients with AML or those with significant comorbidities. SIGNIFICANCE: Pharmacological inhibition of EZH2 renders DNA of AML cells more accessible to cytotoxic agents, facilitating leukemia suppression with reduced doses of chemotherapy.See related commentary by Adema and Colla, p. 359.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Animais , Humanos , Camundongos
6.
Int J Dermatol Venereol ; 4(2): 70-75, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34278326

RESUMO

OBJECTIVE: Well-defined germ-line mutations in the PTCH1 gene are associated with syndromic multiple basal cell carcinomas (BCCs). Here, we used whole exome sequencing (WES) to identify the role of patched-1 in patients with multiple, unusually large BCCs. METHODS: A 72-year old patient presenting with numerous BCCs progressing to large ulcerating lesions was enrolled. WES was used to identify the pathogenic gene locus. RESULTS: Genetic work-up by WES identified a homozygous PTCH1 nonsense mutation in the tumor tissue but not present in her blood cells or in non-lesional skin. In addition, heterozygous missense mutations were identified in three cancer-associated genes (EPHB2, RET, and GALNT12) in blood cells as well as in lesional and non-lesional skin. We also tested systemic immune therapy as a potentially beneficial approach to treat patients with numerous large BCCs on scatted areas of involvement. A rapid and sustained response to nivolumab was noted, suggesting that it is an efficacious drug for long-term therapeutic outcome. CONCLUSION: PTCH1, EPHB2, RET, and GALNT12 may potentially contribute to the synergistic oncogene driven malignant transformation manifesting as multiple, unusually large BCCs.

7.
Front Immunol ; 12: 679498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149716

RESUMO

IFN-ß has been the treatment for multiple sclerosis (MS) for almost three decades, but understanding the mechanisms underlying its beneficial effects remains incomplete. We have shown that MS patients have increased numbers of GM-CSF+ Th cells in circulation, and that IFN-ß therapy reduces their numbers. GM-CSF expression by myelin-specific Th cells is essential for the development of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. These findings suggested that IFN-ß therapy may function via suppression of GM-CSF production by Th cells. In the current study, we elucidated a feedback loop between monocytes and Th cells that amplifies autoimmune neuroinflammation, and found that IFN-ß therapy ameliorates central nervous system (CNS) autoimmunity by inhibiting this proinflammatory loop. IFN-ß suppressed GM-CSF production in Th cells indirectly by acting on monocytes, and IFN-ß signaling in monocytes was required for EAE suppression. IFN-ß increased IL-10 expression by monocytes, and IL-10 was required for the suppressive effects of IFN-ß. IFN-ß treatment suppressed IL-1ß expression by monocytes in the CNS of mice with EAE. GM-CSF from Th cells induced IL-1ß production by monocytes, and, in a positive feedback loop, IL-1ß augmented GM-CSF production by Th cells. In addition to GM-CSF, TNF and FASL expression by Th cells was also necessary for IL-1ß production by monocyte. IFN-ß inhibited GM-CSF, TNF, and FASL expression by Th cells to suppress IL-1ß secretion by monocytes. Overall, our study describes a positive feedback loop involving several Th cell- and monocyte-derived molecules, and IFN-ß actions on monocytes disrupting this proinflammatory loop.


Assuntos
Autoimunidade , Comunicação Celular , Interferon beta/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Autoimunidade/efeitos dos fármacos , Comunicação Celular/genética , Comunicação Celular/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Interferon beta/farmacologia , Camundongos , Camundongos Knockout , Monócitos/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos
8.
Cancers (Basel) ; 13(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946495

RESUMO

HER2, which is associated with clinically aggressive disease, is overexpressed in 15-20% of breast cancers (BC). The host immune system participates in the therapeutic response of HER2+ breast cancer. Identifying genetic programs that participate in ErbB2-induced tumors may provide the rational basis for co-extinction therapeutic approaches. Peroxisome proliferator-activated receptor γ (PPARγ), which is expressed in a variety of malignancies, governs biological functions through transcriptional programs. Herein, genetic deletion of endogenous Pparγ1 restrained mammary tumor progression, lipogenesis, and induced local mammary tumor macrophage infiltration, without affecting other tissue hematopoietic stem cell pools. Endogenous Pparγ1 induced expression of both an EphA2-Amphiregulin and an inflammatory INFγ and Cxcl5 signaling module, that was recapitulated in human breast cancer. Pparγ1 bound directly to growth promoting and proinflammatory target genes in the context of chromatin. We conclude Pparγ1 promotes ErbB2-induced tumor growth and inflammation and represents a relevant target for therapeutic coextinction. Herein, endogenous Pparγ1 promoted ErbB2-mediated mammary tumor onset and progression. PPARγ1 increased expression of an EGF-EphA2 receptor tyrosine kinase module and a cytokine/chemokine 1 transcriptional module. The induction of a pro-tumorigenic inflammatory state by Pparγ1 may provide the rationale for complementary coextinction programs in ErbB2 tumors.

9.
Cell Rep ; 32(11): 108151, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937140

RESUMO

Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates RB and functions as a collaborative nuclear oncogene. The serine threonine kinase Akt plays a pivotal role in the control of cellular metabolism, survival, and mitogenic signaling. Herein, Akt1-mediated phosphorylation of downstream substrates in the mammary gland is reduced by cyclin D1 genetic deletion and is induced by mammary-gland-targeted cyclin D1 overexpression. Cyclin D1 is associated with Akt1 and augments the rate of onset and maximal cellular Akt1 activity induced by mitogens. Cyclin D1 is identified in a cytoplasmic-membrane-associated pool, and cytoplasmic-membrane-localized cyclin D1-but not nuclear-localized cyclin D1-recapitulates Akt1 transcriptional function. These studies identify a novel extranuclear function of cyclin D1 to enhance proliferative functions via augmenting Akt1 phosphorylation at Ser473.


Assuntos
Ciclina D1/metabolismo , Mitógenos/metabolismo , Fosfosserina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células 3T3 , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Membrana Celular/metabolismo , Ciclina D1/genética , Quinases Ciclina-Dependentes/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Transgênicos , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Transcrição Gênica
10.
Oncotarget ; 11(23): 2216-2232, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32577166

RESUMO

The human circulation contains cell-free DNA and non-coding microRNA (miRNA). Less is known about the presence of messenger RNA (mRNA). This report profiles the human circulating mRNA transcriptome in people with liver cirrhosis (LC) and hepatocellular carcinoma (HCC) to determine whether mRNA analytes can be used as biomarkers of liver disease. Using RNAseq and RT-qPCR, we investigate circulating mRNA in plasma from HCC and LC patients and demonstrate detection of transcripts representing more than 19,000 different protein coding genes. Remarkably, the circulating mRNA expression levels were similar from person to person over the 21 individuals whose samples were analyzed by RNAseq. Liver derived circulating transcripts such as albumin (ALB), apolipoprotein (APO) A1, A2 & H, serpin A1 & E1, ferritin light chain (FTL) and fibrinogen like 1 (FGL1) were significantly upregulated in HCC patient samples. Higher levels of some of these liver-specific transcripts in the plasma of HCC patients were confirmed by RT-qPCR in another cohort of 20 individuals. Several less abundant circulating transcripts associated with cancer were detected in most HCC samples, but not in healthy subjects. Liver specificity of circulating transcripts was confirmed by investigating their expression in HCC tumor and liver cancer cell lines. Liver specific mRNA sequences in the plasma were predominantly present outside circulating extracellular vesicles. Conclusions: The circulating "mRNA" transcriptome is remarkably consistent in diversity and expression from person to person. Detection of transcripts corresponding to disease selective polypeptides suggests the possibility that circulating mRNA can work as a biomarker analyte for cancer detection.

11.
BMC Bioinformatics ; 21(1): 56, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054449

RESUMO

BACKGROUND: Quality Control in any high-throughput sequencing technology is a critical step, which if overlooked can compromise an experiment and the resulting conclusions. A number of methods exist to identify biases during sequencing or alignment, yet not many tools exist to interpret biases due to outliers. RESULTS: Hence, we developed iSeqQC, an expression-based QC tool that detects outliers either produced due to variable laboratory conditions or due to dissimilarity within a phenotypic group. iSeqQC implements various statistical approaches including unsupervised clustering, agglomerative hierarchical clustering and correlation coefficients to provide insight into outliers. It can be utilized through command-line (Github: https://github.com/gkumar09/iSeqQC) or web-interface (http://cancerwebpa.jefferson.edu/iSeqQC). A local shiny installation can also be obtained from github (https://github.com/gkumar09/iSeqQC). CONCLUSION: iSeqQC is a fast, light-weight, expression-based QC tool that detects outliers by implementing various statistical approaches.


Assuntos
Perfilação da Expressão Gênica/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Análise de Sequência de RNA/normas , Software , Análise por Conglomerados , Humanos , Controle de Qualidade
12.
Sci Rep ; 9(1): 19574, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863085

RESUMO

Acute myocardial infarction is primarily due to coronary atherosclerotic plaque rupture and subsequent thrombus formation. Platelets play a key role in the genesis and progression of both atherosclerosis and thrombosis. Since platelets are anuclear cells that inherit their mRNA from megakaryocyte precursors and maintain it unchanged during their life span, gene expression profiling at the time of an acute myocardial infarction provides information concerning the platelet gene expression preceding the coronary event. In ST-segment elevation myocardial infarction (STEMI), a gene-by-gene analysis of the platelet gene expression identified five differentially expressed genes: FKBP5, S100P, SAMSN1, CLEC4E and S100A12. The logistic regression model used to combine the gene expression in a STEMI vs healthy donors score showed an AUC of 0.95. The same five differentially expressed genes were externally validated using platelet gene expression data from patients with coronary atherosclerosis but without thrombosis. Platelet gene expression profile highlights five genes able to identify STEMI patients and to discriminate them in the background of atherosclerosis. Consequently, early signals of an imminent acute myocardial infarction are likely to be found by platelet gene expression profiling before the infarction occurs.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , Plaquetas/metabolismo , Infarto do Miocárdio/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteína S100A12/genética , Proteína S100A12/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
13.
Oncogene ; 38(22): 4232-4249, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30718920

RESUMO

Lysine methylation of histones and non-histone substrates by the SET domain containing protein lysine methyltransferase (KMT) G9a/EHMT2 governs transcription contributing to apoptosis, aberrant cell growth, and pluripotency. The positioning of chromosomes within the nuclear three-dimensional space involves interactions between nuclear lamina (NL) and the lamina-associated domains (LAD). Contact of individual LADs with the NL are dependent upon H3K9me2 introduced by G9a. The mechanisms governing the recruitment of G9a to distinct subcellular sites, into chromatin or to LAD, is not known. The cyclin D1 gene product encodes the regulatory subunit of the holoenzyme that phosphorylates pRB and NRF1 thereby governing cell-cycle progression and mitochondrial metabolism. Herein, we show that cyclin D1 enhanced H3K9 dimethylation though direct association with G9a. Endogenous cyclin D1 was required for the recruitment of G9a to target genes in chromatin, for G9a-induced H3K9me2 of histones, and for NL-LAD interaction. The finding that cyclin D1 is required for recruitment of G9a to target genes in chromatin and for H3K9 dimethylation, identifies a novel mechanism coordinating protein methylation.


Assuntos
Ciclina D1/metabolismo , Metilação de DNA/fisiologia , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromossomos/fisiologia , Células HEK293 , Humanos , Células MCF-7 , Ligação Proteica/fisiologia
14.
J Cell Physiol ; 234(8): 13042-13056, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30552679

RESUMO

We previously reported that HOXA4, HOXA9, and HOXD10 are selectively expressed in colonic stem cells (SCs) and their overexpression contributes to colorectal cancer (CRC). Our goals here were to determine how these HOX genes are transcriptionally regulated and whether transcriptional dysregulation of HOX genes occurs in CRC. Accordingly, we used correlation analysis to identify genes that are expression-correlated or anticorrelated with HOXA4, HOXA9, and HOXD10. We then used Gene Ontology (GO) analysis to functionally classify these genes. The GO results for both HOXA4 and HOXD10 correlated gene sets for normal colon and CRC show functions mostly classified as developmental, transcriptional regulation, and DNA binding. This raised the question: Are these gene sets regulated by the same transcription factors (TFs)? Consequently, we used promoter analysis and interaction network toolset (PAINT) to identify commonly shared transcription response elements. The results indicated that completely different sets of TFs coregulate HOXA4 and HOXD10 (but not HOXA9) and their expression-correlated genes. And predicted TFs are altered in CRC compared with normal colon. Taken together, analysis of gene signatures correlated with expression of HOXA4 and HOXD10 indicates how these HOX genes are: (a) transcriptionally regulated in the normal colon; (b) dysregulated in CRC. This discovery provides a mechanism for targeting CRC SCs.


Assuntos
Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/biossíntese , Fatores de Transcrição/biossíntese , Neoplasias do Colo/patologia , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
16.
Cell ; 174(5): 1200-1215.e20, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30100187

RESUMO

Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.


Assuntos
Fator de Transcrição E2F1/metabolismo , Glicoproteínas de Membrana/metabolismo , Poro Nuclear/fisiologia , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Carcinogênese , Núcleo Celular/metabolismo , Proliferação de Células , Fator de Transcrição GATA2/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Membrana Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares , Transdução de Sinais
17.
Theranostics ; 8(8): 2251-2263, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721077

RESUMO

Background: Genetic classification of breast cancer based on the coding mRNA suggests the evolution of distinct subtypes. Whether the non-coding genome is altered concordantly with the coding genome and the mechanism by which the cell cycle directly controls the non-coding genome is poorly understood. Methods: Herein, the miRNA signature maintained by endogenous cyclin D1 in human breast cancer cells was defined. In order to determine the clinical significance of the cyclin D1-mediated miRNA signature, we defined a miRNA expression superset from 459 breast cancer samples. We compared the coding and non-coding genome of breast cancer subtypes. Results: Hierarchical clustering of human breast cancers defined four distinct miRNA clusters (G1-G4) associated with distinguishable relapse-free survival by Kaplan-Meier analysis. The cyclin D1-regulated miRNA signature included several oncomirs, was conserved in multiple breast cancer cell lines, was associated with the G2 tumor miRNA cluster, ERα+ status, better outcome and activation of the Wnt pathway. The coding and non-coding genome were discordant within breast cancer subtypes. Seed elements for cyclin D1-regulated miRNA were identified in 63 genes of the Wnt signaling pathway including DKK. Cyclin D1 restrained DKK1 via the 3'UTR. In vivo studies using inducible transgenics confirmed cyclin D1 induces Wnt-dependent gene expression. Conclusion: The non-coding genome defines breast cancer subtypes that are discordant with their coding genome subtype suggesting distinct evolutionary drivers within the tumors. Cyclin D1 orchestrates expression of a miRNA signature that induces Wnt/ß-catenin signaling, therefore cyclin D1 serves both upstream and downstream of Wnt/ß-catenin signaling.


Assuntos
Neoplasias da Mama/genética , Ciclina D1/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Animais , Ciclina D1/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos , MicroRNAs/metabolismo , Prognóstico , Resultado do Tratamento , Via de Sinalização Wnt/genética
18.
Oncoimmunology ; 7(4): e1408747, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29632720

RESUMO

Anti-PD-1 immunotherapy is the standard of care for treating many patients with non-small cell lung cancer (NSCLC), yet mechanisms of treatment failure are emerging. We present a case of NSCLC, who rapidly progressed during a trial (NCT02318771) combining palliative radiotherapy and pembrolizumab. Planned tumor biopsy demonstrated PD-1 expression by NSCLC cells. We validated this observation by detecting PD-1 transcript in lung cancer cells and by co-localizing PD-1 and lung cancer-specific markers in resected lung cancer tissues. We further investigated the biological role of cancer-intrinsic PD-1 in a mouse lung cancer cell line, M109. Knockout or antibody blockade of PD-1 enhanced M109 viability in-vitro, while PD-1 overexpression and exposure to recombinant PD-L1 diminished viability. PD-1 blockade accelerated growth of M109-xenograft tumors with increased proliferation and decreased apoptosis in immune-deficient mice. This represents a first-time report of NSCLC-intrinsic PD-1 expression and a potential mechanism by which PD-1 blockade may promote cancer growth.

19.
Cancer Discov ; 8(5): 568-581, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29496664

RESUMO

Targeting cyclin-dependent kinases 4/6 (CDK4/6) represents a therapeutic option in combination with BRAF inhibitor and/or MEK inhibitor (MEKi) in melanoma; however, continuous dosing elicits toxicities in patients. Using quantitative and temporal in vivo reporting, we show that continuous MEKi with intermittent CDK4/6 inhibitor (CDK4/6i) led to more complete tumor responses versus other combination schedules. Nevertheless, some tumors acquired resistance that was associated with enhanced phosphorylation of ribosomal S6 protein. These data were supported by phospho-S6 staining of melanoma biopsies from patients treated with CDK4/6i plus targeted inhibitors. Enhanced phospho-S6 in resistant tumors provided a therapeutic window for the mTORC1/2 inhibitor AZD2014. Mechanistically, upregulation or mutation of NRAS was associated with resistance in in vivo models and patient samples, respectively, and mutant NRAS was sufficient to enhance resistance. This study utilizes an in vivo reporter model to optimize schedules and supports targeting mTORC1/2 to overcome MEKi plus CDK4/6i resistance.Significance: Mutant BRAF and NRAS melanomas acquire resistance to combined MEK and CDK4/6 inhibition via upregulation of mTOR pathway signaling. This resistance mechanism provides the preclinical basis to utilize mTORC1/2 inhibitors to improve MEKi plus CDK4/6i drug regimens. Cancer Discov; 8(5); 568-81. ©2018 AACR.See related commentary by Sullivan, p. 532See related article by Romano et al., p. 556This article is highlighted in the In This Issue feature, p. 517.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição E2F/metabolismo , Expressão Gênica , Genes Reporter , Inibidores de Proteínas Quinases/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Modelos Animais de Doenças , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Fosforilação , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Matrix Biol ; 70: 20-35, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29530483

RESUMO

Therapeutic approaches aimed at curing prostate cancer are only partially successful given the occurrence of highly metastatic resistant phenotypes that frequently develop in response to therapies. Recently, we have described αvß6, a surface receptor of the integrin family as a novel therapeutic target for prostate cancer; this epithelial-specific molecule is an ideal target since, unlike other integrins, it is found in different types of cancer but not in normal tissues. We describe a novel αvß6-mediated signaling pathway that has profound effects on the microenvironment. We show that αvß6 is transferred from cancer cells to monocytes, including ß6-null monocytes, by exosomes and that monocytes from prostate cancer patients, but not from healthy volunteers, express αvß6. Cancer cell exosomes, purified via density gradients, promote M2 polarization, whereas αvß6 down-regulation in exosomes inhibits M2 polarization in recipient monocytes. Also, as evaluated by our proteomic analysis, αvß6 down-regulation causes a significant increase in donor cancer cells, and their exosomes, of two molecules that have a tumor suppressive role, STAT1 and MX1/2. Finally, using the Ptenpc-/- prostate cancer mouse model, which carries a prostate epithelial-specific Pten deletion, we demonstrate that αvß6 inhibition in vivo causes up-regulation of STAT1 in cancer cells. Our results provide evidence of a novel mechanism that regulates M2 polarization and prostate cancer progression through transfer of αvß6 from cancer cells to monocytes through exosomes.


Assuntos
Adenocarcinoma/genética , Antígenos de Neoplasias/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Integrinas/genética , Neoplasias da Próstata/genética , Fator de Transcrição STAT1/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Animais , Anticorpos Monoclonais/farmacologia , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/farmacologia , Comunicação Celular , Diferenciação Celular , Técnicas de Cocultura , Exossomos/patologia , Humanos , Integrinas/antagonistas & inibidores , Integrinas/imunologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Masculino , Camundongos , Camundongos Knockout , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/imunologia , Células PC-3 , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/imunologia , Cultura Primária de Células , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Fator de Transcrição STAT1/imunologia , Transdução de Sinais , Células THP-1 , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...